metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

M Rafizadeh,^a* B Mehrabi^b and V. Amani^c

^aDepartment of Chemistry, Teacher Training University, 49 Mofateh Avenue, 15614 Tehran, Iran, ^bDepartment of Geology, Teacher Training University, 49 Mofateh Avenue, 15614 Tehran, Iran, and ^cTehran Suburb Education Organization, Chahardangeh region, Tehran, Iran

Correspondence e-mail: rafizadeh@saba.tmu.ac.ir

Key indicators

Single-crystal X-ray study T = 296 KMean σ (C–C) = 0.002 Å R factor = 0.032 wR factor = 0.083 Data-to-parameter ratio = 22.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2006 International Union of Crystallography All rights reserved

Aquachloro(dimethyl sulfoxide- κO)(pyridine-2,6-dicarboxylato- $\kappa^3 O$,N,O')iron(III)

In the molecule of the title compound, $[FeCl(C_7H_3NO_4)-(C_2H_6OS)(H_2O)]$, the Fe ion is six-coordinate and has a distorted octahedral geometry. The crystal structure is stabilized by intermolecular $O-H\cdots O$ hydrogen bonds, linking the molecules in chains.

Received 30 April 2006 Accepted 11 May 2006

Comment

Recently, we reported the synthesis and crystal structures of the {[Ce(pydcH)(pydc)(H₂O)₂]·4H₂O}_n and {[Sm(pydcH)-(pydc)(H₂O)₂]·4H₂O}_n (Rafizadeh, Amani, Iravani & Neumuller, 2005) and [Tl(pydcH]_n complexes (Rafizadeh, Amani & Neumuller, 2005) (where H₂pydc is 2,6-pyridinedicarboxylic acid). In these complexes, pydc acts as an N– and O-atom donor ligand, forming coordination polymers in the solid state.

A literature survey reveals that attempts have been made to synthesize and characterize transition metal complexes of the pydc ligand. Complexes of this ligand with mono-, bi- and trivalent transition metals, such as $[Ag(pydcH)(pydcH_2)]\cdot H_2O$ (Drew *et al.*, 1970), $[Ni(pydcH)_2]\cdot 3H_2O$ (Cingi *et al.*, 1972) and $[Fe_2(pydc)_2(H_2O)_6]\cdot 2pydcH_2$ (Laine *et al.*, 1995), have been reported. There are also reports on the reaction of H_2pydc with lanthanides in the presence of a Lewis base such as pyda (2,6-diaminopyridine), which lead to the complexes $(H_5O_2)(Hpyda)_2[(Yb(pydc)_3)]\cdot 2H_2O$ (Rafizadeh *et al.*, 2004), $[(H_5O_2)(pydaH)_2(Gd(pydc)_3)]\cdot 2H_2O$ (Rafizadeh, Ranjbar & Amani, 2005) and $[(H_5O_2)(pyda\cdotH)_2(Dy(pydc)_3)]\cdot 2H_2O$ (Rafizadeh *et al.*, 2006). Here, we report the crystal structure of the title compound, (I).

The coordination of the Fe atom in (I) is distorted octahedral. The sites occupied by the O atoms of the pydc ligand show a distortion in the equatorial plane. The O1–Fe1–O3 angle is distorted from linearity by about 29°. The other four sites around the Fe atom are occupied by two O atoms of dimethyl sulfoxide and water molecules, one N atom of the pydc ligand and one Cl atom, producing a square without any distortion. The Fe–Cl, Fe–N and mean Fe–O bond lengths

Figure 1

The molecular structure of (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

A packing diagram of (I). Hydrogen bonds are shown as dashed lines.

(Table 1) are in agreement with the corresponding ones in $[Fe_2(pydc)_2(H_2O)_6]$ ·2pydcH₂ (Laine *et al.*, 1995).

The crystal structure is stabilized by intermolecular $O-H\cdots O$ hydrogen bonds (Table 2), linking the molecules in chains (Fig. 2).

Experimental

To a solution of H_2 pydc (0.7 g, 4.2 mmol) in DMSO (20 ml) was added a solution of FeCl₃·6H₂O (1.135 g, 4.2 mmol) in water (40 ml) and the resulting pale-yellow solution was refluxed at 343 K for 5 h. This solution was left to evaporate slowly at room temperature. After

six months, green-yellow prismatic crystals were isolated (yield 1.04 g, 70.2%; m.p. 489 K).

Crystal data

 $\begin{array}{ll} [\text{FeCl}(C_7\text{H}_3\text{NO}_4)(C_2\text{H}_6\text{OS})\text{-} & V = 1 \\ (\text{H}_2\text{O})] & Z = 4 \\ M_r = 352.55 & D_x = \\ \text{Monoclinic, } P2_1/n & \text{Mo } K \\ a = 7.2641 \ (4) \ \text{\AA} & \mu = 1 \\ b = 10.3018 \ (4) \ \text{\AA} & T = 2 \\ c = 17.7667 \ (10) \ \text{\AA} & \text{Prism} \\ \beta = 90.014 \ (5)^\circ & 0.60 \end{array}$

Data collection

Stoe IPDS-II diffractometer ω scans Absorption correction: numerical (X-SHAPE; Stoe & Cie, 2004) $T_{\min} = 0.554, T_{\max} = 0.732$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.083$ S = 1.044048 reflections 180 parameters H atoms treated by a mixture of independent and constrained refinement $V = 1329.54 (12) Å^{3}$ Z = 4 $D_{x} = 1.761 \text{ Mg m}^{-3}$ Mo K\$\alpha\$ radiation \$\mu\$ = 1.51 mm^{-1}\$ T = 296 (2) KPrism, green-yellow $0.60 \times 0.45 \times 0.31 \text{ mm}$

27972 measured reflections 4048 independent reflections 3563 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.044$ $\theta_{\text{max}} = 30.5^{\circ}$

+ 0.6263 <i>P</i>] where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.33 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{min} = -0.43 \text{ e } \text{\AA}^{-3}$	$w = 1/[\sigma^2(F_0^2) + (0.0397P)^2]$
where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.33 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.43 \text{ e } \text{Å}^{-3}$	+ 0.6263P]
$(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.33 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{min} = -0.43 \text{ e } \text{\AA}^{-3}$	where $P = (F_0^2 + 2F_c^2)/3$
$\Delta \rho_{\text{max}} = 0.33 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.43 \text{ e } \text{\AA}^{-3}$	$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{\rm min} = -0.43 \text{ e } \text{\AA}^{-3}$	$\Delta \rho_{\rm max} = 0.33 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.43 \text{ e } \text{\AA}^{-3}$

Table 1Selected geometric parameters (Å, °).

Fe1-O5	2.0140 (14)	Fe1-O1	2.0497 (12)
Fe1-O3	2.0203 (12)	Fe1-N1	2.0746 (13)
Fe1-O6	2.0427 (14)	Fe1-Cl1	2.2669 (5)
05 - Ee1 - 03	92 17 (5)	O6 = Fe1 = N1	88.09 (6)
O5-Fe1-O6	174.66 (6)	O1-Fe1-N1	75.30 (5)
O3-Fe1-O6	91.86 (6)	O5-Fe1-Cl1	91.52 (5)
O5-Fe1-O1	88.39 (6)	O3-Fe1-Cl1	102.70 (4)
O3-Fe1-O1	151.27 (5)	O6-Fe1-Cl1	91.01 (5)
O6-Fe1-O1	86.40 (6)	O1-Fe1-Cl1	106.01 (4)
O5-Fe1-N1	89.48 (6)	N1-Fe1-Cl1	178.37 (4)
O3-Fe1-N1	75.98 (5)		

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O6-H61\cdots O2^{i}$	0.75 (3)	1.92 (3)	2.669 (2)	176 (3)
$O6-H62\cdots O4^{ii}$	0.73 (3)	1.93 (3)	2.6620 (19)	176 (3)

Water H atoms were located in a difference sythesis and refined isotropically. The remaining H atoms were positioned geometrically [with C-H = 0.93 and 0.96Å for aromatic and methyl H atoms, respectively] and constrained to ride on their parent atoms, with $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm C})$.

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s)

metal-organic papers

used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *X-STEP* (Stoe & Cie, 2000); software used to prepare material for publication: *SHELXL97*.

The authors acknowledge Teacher Training University for financial support.

References

- Cingi, M. B., Villa, A. C., Guastini, C. & Nardelli, M. (1972). Gazz. Chim. Ital. 102, 1026–1033.
- Drew, M. G. B., Matthews, R. W. & Walton, R. A. (1970). J. Chem. Soc. A, pp. 1405–1410.

- Laine, P., Gourdon, A., Launay, J.-P. & Tuchagues, J.-P. (1995). *Inorg. Chem.* **34**, 5150–5155.
- Rafizadeh, M. & Amani, V. (2006). Acta Cryst. E62, m90-m91.
- Rafizadeh, M., Amani, V., Iravani, E. & Neumuller, B. (2005). Z. Anorg. Allg. Chem. 631, 952–955.
- Rafizadeh, M., Amani, V. & Neumuller, B. (2005). Z. Anorg. Allg. Chem. 631, 1753–1755.

Rafizadeh, M., Ranjbar, M. & Amani, V. (2004). Acta Cryst. E60, m479-m481.

Rafizadeh, M., Ranjbar, M. & Amani, V. (2005). Anal. Sci. 21, x113-x114.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Stoe & Cie (2000). X-STEP. Version 1.07e. Stoe & Cie, Darmstadt, Germany. Stoe & Cie (2004). X-SHAPE. Version 2.05. Stoe & Cie, Darmstadt, Germany.

Stoe & Cie (2005). X-AREA (Version 1.31) and X-RED32 (Version 1.26). Stoe & Cie, Darmstadt, Germany.